English French German Spain Italian Dutch Russian Japanese Korean Arabic Chinese Simplified

22/03/11

Larutan Netralisasi

LARUTAN NETRALISASI

a. Netralisasi
Netralisasi dapat didefinisikan sebagai reaksi antara proton (atau ion hidronium) dan ion hidroksida membentuk air. Netralisasi di larutan dalam air.
H+ + OH-–> H2O (9.33)
H3O+ + OH-–> 2H2O (9.34)
Jumlah mol asam (proton) sama dengan jumlah mol basa (ion hidroksida).
Stoikiometri netralisasi nAMAVA = nBMBVB
jumlah mol proton jumlah mol ion hidroksida
subskrip A dan B menyatakan asam dan basa, n valensi, M konsentrasi molar asam atau basa, dan V volume asam atau basa.
Dengan bantuan persamaan di atas, mungkin untuk menentukan konsentrasi basa (atau asam) yang konsentrasinya belum diketahui dengan netralisasi larutan asam (atau basa) yang konsentrasinya telah diketahui. Prosedur ini disebut dengan titrasi netralisasi.
b. Garam
Setiap asam atau h=garam memiliki ion lawannya, dan reaksi asam basa melibatkan ion-ion ini. Dalam reaksi netralisasi khas seperti antara HCl dan NaOH,
HCl + NaOH –> NaCl + H2O (9.35)
asam
basa
garam
air
Selain air, terbentuk NaCl dari ion khlorida, ion lawan dari proton, dan ion natrium, ion lawan basa. Zat yang terbentuk dalam netralisasi semacam ini disebut dengan garam. Bila air diuapkan, natrium khlorida akan tinggal. Kita cenderung percaya bahwa garam bersifat netral karena garam terbentuk dalam netralisasi. Memang NaCl bersifat netral. Namun, larutan dalam air beberapa garam kadang asam atau basa. Misalnya, natrium asetat, CH3COONa, garam yang dihasilkan dari reaksi antara asam asetat dan natrium hidroksida, bersifat asam lemah.
Sebaliknya, amonium khlorida NH4Cl, garam yang terbentuk dari asam kuat HCl dan basa lemah amonia, bersifat asam lemah. Fenomena ini disebut hidrolisis garam.
Diagram skematik hidrolisis ditunjukkan di Gambar 9.1. Di larutan dalam air, garam AB ada dalam kesetimbangan dengan sejumlah kecil H+ dan OH- yang dihasilkan dari elektrolisis air menghasilkan asam HA dan basa BOH (kesetimbangan dalam arah vertikal).


c. Kurva titrasi
Dalam reaksi netralisasi asam dan basa, atau basa dengan asam, bagaimana konsentrasi [H+], atau pH, larutan bervariasi? Perhitungan [H+] dalam titrasi asam kuat dengan basa kuat atau sebaliknya basa kuat dengan asam kuat tidak sukar sama sekali. Perhitungan ini dapat dilakukan dengan membagi jumlah mol asam (atau basa) yang tinggal dengan volume larutannya.
Plot [H+] atau pH vs. jumlah asam atau basa yang ditambahkan disebut kurva titrasi (Gambar 9.2). Mari kita menggambarkan kurva titrasi bila volume awal asam VA, konsentrasi asam MA, dan volume basa yang ditambahkan vB dan konsentrasinya adalah MB.
1) TITRASI ASAM KUAT DAN BASA KUAT.
1.1   Sebelum titik ekivalen:
[H+] = (MAVA – MBvB)/(VA + vB) (9.45)
1.2 Pada titik ekivalen:
[H+] = √Kw = 10-7 (9.46)
1.3 Setelah titik ekivalen:
[OH-] = (MBvB – MAVA)/(VA + vB) (9.47)
[H+] = Kw/[OH-] = (VA + vB)Kw/(MBvB – MAVA) (9.48)
2) TITRASI ASAM LEMAH DENGAN BASA KUAT
Hasilnya akan berbeda bila asam lemah dititrasi dengan basa kuat. Titrasi 10 x 10-3 dm3 asam asetat 0,1 mol dm-3 dengan NaOH 0,1 mol dm-3 merupakan contoh khas (Gambar 9.2(b)).
2.1 Titik awal: vB = 0. pH di tahap awal lebih besar dari di kasus sebelumnya.
2.2 Sebelum titik ekivalen: sampai titik ekivalen, perubahan pH agak lambat.
2.3 Pada titik ekivalen (vB = 10 x 10-3 dm3): pada titik ini hanya natrium asetat CH3COONa yang ada.
2.4 Setelah titik ekivalen. [H+] larutan ditentukan oleh konsentrasi NaOH, bukan oleh CH3COONa.
(3) TITRASI BASA LEMAH DENGAN ASAM KUAT
Titrasi 10 x 10-3 dm3 basa lemah misalnya larutan NH3 0,1 mol dm-3 dengan asam kuat misalnya HCl 0,1 mol dm-3 . Dalam kasus ini, nilai pH pada kesetimbangan agak lebih kecil daripada di kasus titrasi asam kuat dengan basa kuat. Kurvanya curam, namun, perubahannya cepat di dekat titik kesetimbangan. Akibatnya titrasi masih mungkin asalkan indikator yang tepat dipilih, yakni indikator dengan rentang indikator yang sempit.
(4) TITRASI BASA LEMAH (ASAM LEMAH) DENGAN ASAM LEMAH (BASA LEMAH).
Dalam titrasi jenis ini, kurva titrasinya tidak akan curam pada titik kesetimbangan, dan perubahan pHnya lambat. Jadi tidak ada indikator yang dapat menunjukkan perubahan warna yang jelas. Hal ini berarti titrasi semacam ini tidak mungkin dilakukan.
d. Kerja bufer
Kerja bufer didefinisikan sebagai kerja yang membuat pH larutan hampir tidak berubah dengan penambahan asam atau basa. Larutan yang memiliki kerja bufer disebut larutan bufer. Sebagian besar larutan bufer terbentuk dari kombinasi garam (dari asam lemah dan basa kuat) dan asam lemahnya. Cairan tubuh organisme adalah larutan bufer, yang akan menekan perubahan pH yang cepat, yang berbahaya bagi makhluk hidup.
Nilai pH larutan bufer yang terbuat dari asam lemah dan garamnya dapat dihitung dengan menggunakan persamaan berikut.
pH = pKa + log([garam]/[asam]) (9.54)

e. Indikator
Pigmen semacam fenolftalein dan metil merah yang digunakan sebagai indikator titrasi adalah asam lemah (disimbolkan dengan HIn) dan warnanya ditentukan oleh [H+] larutan. Jadi,
HIn H+ + In- …. (9.55)
Rasio konsentrasi indikator dan konjgatnya menentukan warna larutan diberikan sebagai:
KIn = [H+][In-]/[HIn], ∴ [In-]/[HIn] = KIn/[H+] … (9.56)
KIn adalah konstanta disosiasi indikator.
Rentang pH yang menimbulkan perubahan besar warna indikator disebut dengan interval transisi. Alasan mengapa ada sedemikian banyak indikator adalah fakta bahwa nilai pH titik ekivalen bergantung pada kombinasi asam dan basa. Kunci pemilihan indikator bergantung pada apakah perubahan warna yang besar akan terjadi di dekat titik ekivalen. Di Tabel 9.3 didaftarkan beberapa indikator penting.
Tabel 9.3 Indikator penting dan interval transisinya.
Indikator interval transisi perubahan warna(asam–>basa)
Biru timol 1,2-2,8 merah –> kuning
Metil oranye 3,1-4,4 merah –> kuning
Metil merah 4,2-6,3 merah –> kuning
bromotimol biru 6,0-7,6 kuning–> biru
merah kresol 7,2-8,8 kuning –> merah
fenolftalein 8,3-10,0 tak berwarna–> merah
alizarin kuning 10,2-12,0 kuning–> merah

Tidak ada komentar:

Posting Komentar

Welcome